it provides the first evidence of the therapeutic potential of the nanobubbles in reverting hypoxic tumors
Joseph Irudayaraj
A major obstacle in effectively treating certain cancers is a condition known as hypoxia, where tumor cells are starved of oxygen and consequently become resistant to conventional treatments like radiation and chemotherapy. When this happens in practice, a doctor typically increases the radiation dose or the concentration of the chemotherapy drug, which often adversely affects the patient.
University of Illinois at Urbana-Champaign Bioengineering Professor Joseph Irudayaraj and his team have recently developed a nanotechnology-based platform that delivers oxygen to the diseased cells and helps restore the effectiveness of the cancer treatment. Joseph Irudayaraj Joseph Irudayaraj
“Cells in the hypoxic state are two- to three-times less receptive to treatments like radiation and chemotherapy,” noted Irudayaraj, the Founder Professor in Bioengineering, who holds appointments in the Carl Woese Institute for Genomic Biology and Micro + Nanotechnology Lab on campus. “If our technology can even decrease the radiation dose by 20%, then that’s effective.”
Irudayaraj and his research team created injectable nano-size oxygen bubbles made of FDA-approved cellulose compounds that are bio-compatible. In a study published in Nature Scientific Reports, they injected the 80-500 nanometer-size nanobubbles in mouse models with cervical cancer (HeLa) and bladder cancer (MB49) tumors.